171 research outputs found

    Experimental comparison of single-pixel imaging algorithms

    Full text link
    Single-pixel imaging (SPI) is a novel technique capturing 2D images using a photodiode, instead of conventional 2D array sensors. SPI owns high signal-to-noise ratio, wide spectrum range, low cost, and robustness to light scattering. Various algorithms have been proposed for SPI reconstruction, including the linear correlation methods, the alternating projection method (AP), and the compressive sensing based methods. However, there has been no comprehensive review discussing respective advantages, which is important for SPI's further applications and development. In this paper, we reviewed and compared these algorithms in a unified reconstruction framework. Besides, we proposed two other SPI algorithms including a conjugate gradient descent based method (CGD) and a Poisson maximum likelihood based method. Both simulations and experiments validate the following conclusions: to obtain comparable reconstruction accuracy, the compressive sensing based total variation regularization method (TV) requires the least measurements and consumes the least running time for small-scale reconstruction; the CGD and AP methods run fastest in large-scale cases; the TV and AP methods are the most robust to measurement noise. In a word, there are trade-offs between capture efficiency, computational complexity and robustness to noise among different SPI algorithms. We have released our source code for non-commercial use

    Sampling-based Causal Inference in Cue Combination and its Neural Implementation

    Full text link
    Causal inference in cue combination is to decide whether the cues have a single cause or multiple causes. Although the Bayesian causal inference model explains the problem of causal inference in cue combination successfully, how causal inference in cue combination could be implemented by neural circuits, is unclear. The existing method based on calculating log posterior ratio with variable elimination has the problem of being unrealistic and task-specific. In this paper, we take advantages of the special structure of the Bayesian causal inference model and propose a hierarchical inference algorithm based on importance sampling. A simple neural circuit is designed to implement the proposed inference algorithm. Theoretical analyses and experimental results demonstrate that our algorithm converges to the accurate value as the sample size goes to infinite. Moreover, the neural circuit we design can be easily generalized to implement inference for other problems, such as the multi-stimuli cause inference and the same-different judgment

    Multi-frame denoising of high speed optical coherence tomography data using inter-frame and intra-frame priors

    Full text link
    Optical coherence tomography (OCT) is an important interferometric diagnostic technique which provides cross-sectional views of the subsurface microstructure of biological tissues. However, the imaging quality of high-speed OCT is limited due to the large speckle noise. To address this problem, this paper proposes a multi-frame algorithmic method to denoise OCT volume. Mathematically, we build an optimization model which forces the temporally registered frames to be low rank, and the gradient in each frame to be sparse, under logarithmic image formation and noise variance constraints. Besides, a convex optimization algorithm based on the augmented Lagrangian method is derived to solve the above model. The results reveal that our approach outperforms the other methods in terms of both speckle noise suppression and crucial detail preservation

    SurfaceNet+: An End-to-end 3D Neural Network for Very Sparse Multi-view Stereopsis

    Full text link
    Multi-view stereopsis (MVS) tries to recover the 3D model from 2D images. As the observations become sparser, the significant 3D information loss makes the MVS problem more challenging. Instead of only focusing on densely sampled conditions, we investigate sparse-MVS with large baseline angles since the sparser sensation is more practical and more cost-efficient. By investigating various observation sparsities, we show that the classical depth-fusion pipeline becomes powerless for the case with a larger baseline angle that worsens the photo-consistency check. As another line of the solution, we present SurfaceNet+, a volumetric method to handle the 'incompleteness' and the 'inaccuracy' problems induced by a very sparse MVS setup. Specifically, the former problem is handled by a novel volume-wise view selection approach. It owns superiority in selecting valid views while discarding invalid occluded views by considering the geometric prior. Furthermore, the latter problem is handled via a multi-scale strategy that consequently refines the recovered geometry around the region with the repeating pattern. The experiments demonstrate the tremendous performance gap between SurfaceNet+ and state-of-the-art methods in terms of precision and recall. Under the extreme sparse-MVS settings in two datasets, where existing methods can only return very few points, SurfaceNet+ still works as well as in the dense MVS setting. The benchmark and the implementation are publicly available at https://github.com/mjiUST/SurfaceNet-plus.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 202

    Efficient single pixel imaging in Fourier space

    Full text link
    Single pixel imaging (SPI) is a novel technique being able to capture 2D images using a bucket detector with high signal-to-noise ratio, wide spectrum range and low cost. Conventional SPI projects random illumination patterns to randomly and uniformly sample the entire scene's information. Determined by the Nyquist sampling theory, SPI needs either numerous projections or high computation cost to reconstruct the target scene, especially for high-resolution cases. To address this issue, we propose an efficient single pixel imaging technique (eSPI), which instead projects sinusoidal patterns for importance sampling of the target scene's spatial spectrum in Fourier space. Specifically, utilizing the centrosymmetric conjugation and sparsity priors of natural images' spatial spectra, eSPI sequentially projects two π2\frac{\pi}{2}-phase-shifted sinusoidal patterns to obtain each Fourier coefficient in the most informative spatial frequency bands. eSPI can reduce requisite patterns by two orders of magnitude compared to conventional SPI, which helps a lot for fast and high-resolution SPI

    Single-shot thermal ghost imaging using wavelength-division multiplexing

    Full text link
    Ghost imaging (GI) is a potential imaging technique that reconstructs the target scene from its correlated measurements with a sequential of patterns. Restricted by the multi-shot principle, GI usually requires long acquisition time and is limited in observation of dynamic scenes. To handle this problem, this paper proposes a single-shot thermal ghost imaging scheme via wavelength-division multiplexing technique. Specifically, we generate thousands of patterns simultaneously by modulating a broadband light source with a wavelength dependent diffuser. These patterns carry the scene's spatial information and then the correlated measurements are coupled into a spectrometer for the final reconstruction. This technique accelerates the ghost imaging speed significantly and promotes the applications in dynamic ghost imaging.Comment: 10 pages, 4 figure

    Self-synchronizing scheme for high speed computational ghost imaging

    Full text link
    Computational ghost imaging needs to acquire a large number of correlated measurements between reference patterns and the scene for reconstruction, so extremely high acquisition speed is crucial for fast ghost imaging. With the development of technologies, high frequency illumination and detectors are both available, but their synchronization needs technique demanding customization and lacks flexibility for different setup configurations. This letter proposes a self-synchronization scheme that can eliminate this difficulty by introducing a high precision synchronization technique and corresponding algorithm. We physically implement the proposed scheme using a 20kHz spatial light modulator to generate random binary patterns together with a 100 times faster photodiode for high speed ghost imaging, and the acquisition frequency is around 14 times faster than that of state-of-the-arts

    DeepHuman: 3D Human Reconstruction from a Single Image

    Full text link
    We propose DeepHuman, an image-guided volume-to-volume translation CNN for 3D human reconstruction from a single RGB image. To reduce the ambiguities associated with the surface geometry reconstruction, even for the reconstruction of invisible areas, we propose and leverage a dense semantic representation generated from SMPL model as an additional input. One key feature of our network is that it fuses different scales of image features into the 3D space through volumetric feature transformation, which helps to recover accurate surface geometry. The visible surface details are further refined through a normal refinement network, which can be concatenated with the volume generation network using our proposed volumetric normal projection layer. We also contribute THuman, a 3D real-world human model dataset containing about 7000 models. The network is trained using training data generated from the dataset. Overall, due to the specific design of our network and the diversity in our dataset, our method enables 3D human model estimation given only a single image and outperforms state-of-the-art approaches

    Fast and High Quality Highlight Removal from A Single Image

    Full text link
    Specular reflection exists widely in photography and causes the recorded color deviating from its true value, so fast and high quality highlight removal from a single nature image is of great importance. In spite of the progress in the past decades in highlight removal, achieving wide applicability to the large diversity of nature scenes is quite challenging. To handle this problem, we propose an analytic solution to highlight removal based on an L2 chromaticity definition and corresponding dichromatic model. Specifically, this paper derives a normalized dichromatic model for the pixels with identical diffuse color: a unit circle equation of projection coefficients in two subspaces that are orthogonal to and parallel with the illumination, respectively. In the former illumination orthogonal subspace, which is specular-free, we can conduct robust clustering with an explicit criterion to determine the cluster number adaptively. In the latter illumination parallel subspace, a property called pure diffuse pixels distribution rule (PDDR) helps map each specular-influenced pixel to its diffuse component. In terms of efficiency, the proposed approach involves few complex calculation, and thus can remove highlight from high resolution images fast. Experiments show that this method is of superior performance in various challenging cases.Comment: 11 pages, 10 figures, submitted to IEEE TI

    Rank Minimization for Snapshot Compressive Imaging

    Full text link
    Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple frames are mapped into a single measurement, with video compressive imaging and hyperspectral compressive imaging as two representative applications. Though exciting results of high-speed videos and hyperspectral images have been demonstrated, the poor reconstruction quality precludes SCI from wide applications.This paper aims to boost the reconstruction quality of SCI via exploiting the high-dimensional structure in the desired signal. We build a joint model to integrate the nonlocal self-similarity of video/hyperspectral frames and the rank minimization approach with the SCI sensing process. Following this, an alternating minimization algorithm is developed to solve this non-convex problem. We further investigate the special structure of the sampling process in SCI to tackle the computational workload and memory issues in SCI reconstruction. Both simulation and real data (captured by four different SCI cameras) results demonstrate that our proposed algorithm leads to significant improvements compared with current state-of-the-art algorithms. We hope our results will encourage the researchers and engineers to pursue further in compressive imaging for real applications.Comment: 18 pages, 21 figures, and 2 tables. Code available at https://github.com/liuyang12/DeSC
    • …
    corecore